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Overview 

•  Stochastic PDE: Re-formulation 

•  Solution Strategies: generalized polynomial chaos (gPC) 

•  Application: Epistemic uncertainty analysis 



(Re-)Formulation of PDE: Input Parameterization  

   
∂u
∂t

(t,x) = L(u) +  boundary/initial conditions

•  Goal: To characterize the random inputs by a set of random variables 
  Finite number 
  Mutual independence 

•  If inputs == parameters 
  Identify the (smallest) independent set 
  Prescribe probability distribution 

•  Else if inputs == fields/processes  
  Approximate the field by a function of finite number of RVs 
  Well-studied for Gaussian processes 
  Under-developed for non-Gaussian processes 
  Examples: Karhunen-Loeve expansion, spectral decomposition, etc. 

     
a(x,ω)≈µa (x) + ai (x)Zi (ω)

i=1

d

∑



The Reformulation 

•  Uncertain inputs are characterized by nz random variables Z 

   
∂u
∂t

(t,x,Z ) = L(u) +  boundary/initial conditions

   u(t, x,Z ) : [0,T ]× D × RnZ → R

   FZ (s) = Pr(Z ≤ s), s ∈RnZ

•  Probability distribution of Z is prescribed 

•  Stochastic PDE: 

•  Solution: 

Non-trivial task 



     
uN (t,x,Z )  ûk (t,x)Φk (Z )

k =0

N

∑ , #  of basis =
nz + N

N
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⎞

⎠

⎟⎟⎟⎟⎟⎟

•  Nth-order gPC expansion: 

•  Orthogonal basis: 
     
Φi (Z )Φj(Z )ρ(Z ) dZ∫ = δij

Generalized Polynomial Chaos (gPC) 

•  Basis functions: 
  Hermite polynomials: seminal 
work by R. Ghanem 
  General orthogonal polynomials 
(Xiu & Karniadakis, 2002)  

•  Properties: 
  Rigorous mathematics 
  High accuracy, fast convergence 
  Curse-of-dimensionality 

•  Numerical Approaches: 
  Galerkin vs. collocation 

    u(i,Z ) : RnZ → R•  Focus on dependence on Z: 



Gaussian distribution Gamma distribution Beta distribution 

     
E g(Z )( ) = g(z)ρ(z) dz

R
∫  Expectation: 

gPC Basis 

      
Φi (z)Φj(z)ρ(z) dz∫ = E Φi (Z )Φj(Z )⎡

⎣⎢
⎤
⎦⎥ = δij

  Orthogonality: 

     
Φi (z)Φj(z)e−z2

dz
−∞

∞

∫ = δij

     
Φi (z)Φj(z)e−z dz

0

∞

∫ = δij

     
Φi (z)Φj(z) dz

−1

1

∫ = δij

Hermite polynomial Laguerre polynomial Legendre polynomial 



  Example: Uniform random variable 
o  Convergence 
o  Non-optimal 
o  First-order Legendre is exact 

gPC Basis: the Choices 

      
Φi (z)Φj(z)ρ(z) dz∫ = E Φi (Z )Φj(Z )⎡

⎣⎢
⎤
⎦⎥ = δij

  Orthogonality: 

     
Φi (z)Φj(z)e−z2

dz
−∞

∞

∫ = δij

  Example: Hermite polynomial 

  The polynomials:  Z~N(0,1) 

    Φ0 = 1, Φ1 = Z , Φ2 = Z 2−1, Φ3 = Z 3−3Z , 

  Approximation of arbitrary random variable:  Requires L2 integrability 



Computational Efficiency 
  First-order ODE: exponential random input 

Effect of non-optimal basis 



Stochastic Galerkin 

     
uN (t,x,Z )  ûk (t,x)Φk (Z )

k =0

N

∑

•  Galerkin method: Seek 

     
E

∂uN

∂t
(t,x,Z )Φm (Z )

⎡

⎣
⎢

⎤

⎦
⎥ = E L(uN )Φm (Z )⎡⎣ ⎤⎦ , ∀ m ≤ N

Such that 

•  The result: 
  Residue is orthogonal to the gPC space 
  A set of deterministic equations for the coefficients 
  The equations are usually coupled – requires new solver 



Stochastic Collocation 

•  Sampling: (solution statistics only) 
•  Random (Monte Carlo) 
•  Deterministic (lattice rule, tensor grid, cubature) 

•  Collocation: To satisfy governing equations at selected nodes 
  Allow one to use existing deterministic codes repetitively 

•  Stochastic collocation: To construct polynomial approximations 
  Node selection is critical to efficiency and accuracy 
  More than sampling 



Stochastic Collocation: Interpolation 

•  Definition: Given a set of nodes and solution ensemble, find uN in a proper 
                     polynomial space, such that uN≈u in a proper sense. 

•  Interpolation Approaches: 
   
uN (Z ) = u(Z j )Lj (Z )

j=1

Q

∑

    
Li (Z j ) = δij , 1≤ i, j≤Q

Sparse grids: more efficient Tensor grids: inefficient 

(Xiu & Hesthaven, SIAM J. Sci. Comput., 05) 

  Dimension-by-dimension space filling 



Stochastic Computation: The Landscape 

•  Realistic Large-scale Complex Systems: 
•  Complex physics  highly nonlinear systems 
•  Large number of random variables 
•  (Extremely) time consuming simulations 
•  Legacy codes (nearly impossible to re-write)  

•  Stochastic Galerkin: 
•  Difficult to implement 
•  Good mathematical properties 

•  Stochastic collocation is more proper: 
•  Easy to implement  virtually no coding effort 
•  Nonlinearity poses no additional difficulties 



Epistemic Uncertainty: Setup 

•  Epistemic uncertainty:  
  Distribution of Z is not fully known 

•  Governing Equation: 

•  “Some” prior knowledge: 

•  Remark: Zi can be dependent, unbounded, and IZ can be much smaller. 



Encapsulation 

•  Goal: To “encapsulate” each variable 
  For each Zi (potentially unbounded), find a bounded interval to 
   “capture” it. 
  Requires modeling effort 

•  Overwhelming probability condition: 

•  If Zi is bounded, it is “easier” to do 
•  If Zi is unbounded, Xi needs to be “big” enough 



Encapsulation (cont’d) 

•  For each variable: 

•  For all variables: 

•  Overwhelming probability condition: 

•  Reminder: IX may not overlap IZ 



Encapsulation Problem 

•  Original Problem: 

•  Encapsulation Problem: 

•  Assumption: 

o  Solution in a hypercube: 



  
εn = u − un L∞ ( I X )

→ 0, n→∞

Solution Strategy of the Encapsulation Problem 

•  Encapsulation Problem: 

•  Solution strategy: Controllability on point-wise error 

o  un is a good approximation in the entire domain IX (hypercube) 
o  Can “sample” un accurately for all realizations 
o  No probability distribution is assigned in IX. 
o  Convergence is a mathematical preference, not a practical necessity 

•  Requirement on error control is strong but achievable 
o  Sparse grid collocation (with sufficient regularity) 
o  Polynomial Galerkin (e.g., Chebyshev) methods are possible 
o  Without sufficient regularity --- multi-element approach 



•  Solution of the original problem: 

•  Solution in the hypercube: 

Solution “Statistics” 



  
d 2v
dt2 (t,Z ) + γ dv

dt
+ kv = f cos(ωt), v(0) = v0 ,

dv
dt

(0) = v1

   Z = (γ ,k, f ,ω ,v0 ,v1) ∈6

  
d 2u
dt2 (t, X ) + X1

du
dt

+ X2u = X3 cos( X4t), u(0) = X5,
du
dt

(0) = X6

  X = ( X1,…, X6 ) ∈[−1,1]6

Numerical Example 

•  Original Problem: 

•  Encapsulation Problem: 

o  Solved by 6-dimensional sparse grid collocation for t=20 



  
d 2u
dt2 (t,Z ) + Z1

du
dt

+ Z2u = Z3 cos(Z4t), u(0) = Z5,
du
dt

(0) = Z6

  Z1 ~ beta(0.08,0.12,3,2), Z3 ~ beta(0.08,0.1,1,1), Z5 ~ uniform(0.45,0.55), independent

  Z2 = Z1
2 / 4 + 0.01, Z4 = 10Z3, Z6 = (Z5 − 0.5)

Dependent Inputs 

•  4d problem is solved in 6d, without “cutoff” 



  
d 2u
dt2 (t,Z ) + Z1

du
dt

+ Z2u = Z3 cos(Z4t), u(0) = Z5,
du
dt

(0) = Z6

     Gaussian: Z ~ N (0,C), C ∈6×6  is the covariance matrix

Mean Variance 

   IZ = 6 , I X = [−a,a]6 , then δ > 0

Unbounded Inputs: Effect of “Cutoff” 



Mixed Aleatory and Epistemic Case 

  
d 2u
dt2 (t,Z ) + Z1

du
dt

+ Z2u = Z3 cos(Z4t), u(0) = Z5,
du
dt

(0) = Z6

•  Aleatory: 

•  Epistemic: 

CDF of the aleatory RVs at 25 prescribed values of the epistemic variables 

•  Solution obtained by sparse grid collocation via simultaneous construction (5-d) 



Epistemic Uncertainty: Think “Outside the Box” 

•  Original Problem: 

•  Encapsulation Problem: 

•  Question: Does IX have to be a hyber-box? 
  No. IX can be unbounded too. 
  Numerical solution can converge in Lp norm. (More practical) 
  Additional constraints on the measures are needed. 
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Summary 

  Generalized polynomial chaos (gPC) 
•  Multivariate approximation theory 

  Important directions: 
•  Approximation theory in HIGH dimensions 
•  Combination with data 

  Data, any data, can help 

  Uncertainty Analysis: To provide improved prediction 
•  Input characterization 
•  Uncertainty propagation 
•  Post processing 



http://uncertainty-quantification.com/ 


